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Aht7cf—Greert’s functions are developed for the analysisof trhgufar
segments fn microwaveplanar eireuita. Three types of triangles (30°-60”
right-angl~equilatert@ and iaaacelesright-angbxf)are treated by pfaeing
additfonaf image sotrrcea outside the triangular region.

I. INTRODUCTION

Two-dimensional microwave planar components have been

proposed for use in microwave-integrated circuits [1]–[3]. One of

the methods for analyzing these components is by use of Green’s

functions relating voltage at any point to a line current excita-

tion [1]. The Green’s functions for rectangular and circular

geometries are available [1]. Recently triangular elements have

also been proposed for realizing resonators and prototype ele-

ments for bandpass and bandstop filters [4], [5]. The triangular

resonators have been used in the design of 3-port circulators [5],

and gap-coupled triangular segments have been proposed for use

in filter circuits [4]. Mo, characterization of triangular segments

is necessary when an accurate analysis of a three-rnicrostrip

junction (such as encountered in power dividers), shown in

Fig. 1, is needed. However, Green’s functions for triangular

geometries have not been reported so far. This paper deseribes

the development of Green’s functions for three kinds of triangu-

lar geometries useful in planar circuits. These are 1) a 30°-600

right-angled triangle, 2) an equilateral triangle, and 3) an isos-

celes right-angled triangle.

The basic integral equation involved in the analysis of planar

circuits [1] is

v(x, y)= f~DG(x, ylxo, yo)i(xo, yo)dxo~o (1)

where G is the Green’s function of the seeond kind having

dimension of impedance and i(xo, yo) denotes a fictitious source

current density injected normally. J-’(x, y ) denotes voltage at

any point on the segment with respect to the ground plane.

Equation (1) is satisfied inside the eontour C (Fig. 2), and the

open boundary condition on C may be written as

av
Z“”” (2)
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Fig. 1. Triangtdar segment in a typical Y junction.
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Fig. 2. Configuration for a typical segment in planar microwave circaits,

In planar circuits the dimension d is much smaller than the

wavelength and the Green’s function G is given by the solution

of

(V;+ IC2)G= –jq.td8(x-xo)8( y-ye) (3)

with

aG/an=o. (4)

In the above, k denotes propagation constant (a ~ ) in the

dielectric medium. Product of delta functions 8(x – XO)8(Y –yO)

represents a fine current flowing along z-direction and located at

(xo, ye). Such sources have been called line sources in the text

later.

In circuits, which are symmetrical about an axis, even- and

odd-symmetry can be used for complete analysis of the circuit.

For example, in the circuit of Fig. 1, even- and odd-mode

circuits may be analyzed separately. For the odd-mode circuits,

the plane of symmetry (SS’ in Fig. 1) is replaced by an electric

wall at which the boundary condition

G-O (5)

must be satisfied. Thus, there is a need to obtain odd-mode

Green’s functions, which satisfy (5) on one side of triangle (SS’)

and (4) on the remaining sides (AS and AS’) of the pkumr

segment. The function G is evaluated for different triangular

geometries in the following sections.

0018-9480/80/ 1000-1 139$00.7501980 IEEE



1140 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTr-28, NO. 10, OCTOBER1980

II. GREEN’S FUNCTION FOR 30°-600 lUGHT-ANGLE

TRIANGLE

For the triangular geometry shown in Fig. 3(a), the Green’s

function can be obtained by solving (3) with the boundary

conditions given by (4). To obtain an analytical solution for G,

the right-hand side of (3) is made periodic by placing additional

line sources outside the triangle. The additional line sources can

be thought of as obtained by taking multiple images [6] of the

line source at (xO, yo) with respect to the three sides of the

triangle which are magnetic walls as assumed earlier in (2). The
locations of these multiple images are shown in Fig. 3(b).

It can be seen that the periodicity of the pattern is 3a along

the y-axis and fi a along the x-axis. Hence ABCDEF is chosen

as a basic cell which contains 24 line sources in 24 triangular

regions as shown in Fig. 3(b). It may be noted that a solution for

G with this set of multiple sources, will satisfy (3) in the original

region of interest, since (4) is satisfied at all the boundaries of all

triangular regions.

The Fourier series expressions for each of the 24-hne sources,

which repeat periodically in two-dimensional space, are ob-

tained. The corresponding terms of these 24 expressions are

added together and the resulting expression identical to the

right-hand side of (3) in the original triangular region, can be

expressed as

- * .=:. .=:m Cos(%)cos[ 2W3:2”)Y ]

.{(-,,.cos[z~(g:)~o]cos[ z~(;;~)yo]+cos(s)

[

.Cos 27r(m+2n)y0 1 ()27rnxo

3a
+(– l)m+”cos —

Vila

[

.C05 27r(2m+n)yo

1)3a “

Now substituting 1= – (m + n), this reduces to

(6)

_ 8jupd
~ x X(-l)mcos (%)c0s[2T(::’)ylT,(xo$yo)

where T,(x, y ) is defined as

z-,(x,y)=,-l)cos(~)cos[ z~(:;n)y]

+(-WCOS(R).COS[2 T(;:’)Y]

+(-,).cos(%)cos[ ’~(::m)y]

with the condition that the integers 1, m, and n satisfy

l+m+n=O.

It can be seen that

~~(-l)’cOs(%)cOs[ 2T(:=n)ylT,(xo,y”)

= ~ ~(-l)mcos (R)cos[2~(;:’)y ]T1,xo,yo,

= ~ ~(-l)ncos
(%)cos127(i;m)yl~,(xo$yo)

(7)

(8)

(9)

(lo)

(a)

Fig. 3. (a) A 30°–600 right-angled triangular segment. (b) Location of
image sources for a 30° – 60” right-angled triangle.

Using (10), expression (7) can be rewritten as

—S ~ ~T1(xo, yo)T’l(x, y), (11)

It can be verified that the function T’,(x, y ) satisfies the boundary

conditions, @ven by (4), for the triangle shown in Fig. 3(a). Also,

it agrees with the potential function for an equilateral triangle

given by Schelkunoff [7]. The Green’s function G can now be

written in terms of these potential functions T,(x, y ) as

G= ~ ~ AMnTl(x, y). (12)
m.—~n.—m

Substituting (12) in the left-hand side of (3), we get

[ 1
(V~+k2)G= ~ ~ k’-~(m’+mn+n’) A~”T1(x,y).

—w —w

(13)

Since (13) and (11) are equal for all values of x and y, we have

by comparison

A
8jcopdT1(xo, yo)

mn = (14)
16fi r2(m2 +mn+n2)–9fia2k2 “

Substituting (14) in (12) we have

G(x, ylxo, yo)=8jupd

“:5 T1(xo, yo)T1(x, y)
(15)

—w —m 16fi r’(m’ +mn+n2)–9fia2k2
.vJ u,-



IEEE TRANSACITONS ON M’cROw’A~ =ORY ~ TBc~Q~s, VOL. MIT-3 NO. 10, OCTOBER 1980

which is the required Green’s function for (3), for the 30° –60° Y

right-angle triangle shown in Fig. 3(a).

III. GREEN’S FUNCTION FOR AN EQUILATERAL TRIANGLE

k

J’_
2

<

As in Section II, the right-hand side of (3) can be made

periodic by placing additional line sources outside the equilateral ‘> ,

triangle shown in Fig. 4(a). The positions of additional line
o &

sources are obtained by taking multiple images of the original
-i

line source at (xO, yO) with respect to magnetic walls at the three
a-—
2

sides of the triangle. In this case the basic cell which repeats

itself is MKD~Fwhichcontains 12-line sourcesin 12 triangular (a)

regions as shown in Fig. 4(b). Adding the corresponding terms in

Fourier series expressions for each of the line sources in basic

cell, theresulting expression equivalent totheright-hand side of

‘~<.\ ; /.z~T

‘.. :F .-
(3) can be expressed as

-*Z 2 [Cos(%)cos[2’w;2n)”

{[ ][
27r(nz+tt)xo C05 27i’(nz-n)yo

. (– l)ncos
tia 3a 1

1141

[ 3U 1)+’4%)sin[2”(mJ2n)yl

.C05 2?r(2nl+n)y~

{ms(*)sin[27(m~2.)y,]

-(-l) m+ncos (*)sin[ Sa ]
27r(2m+n)y0

F ha —-l

[ ][

27r(m+n)x0 sin 27r(tn-n)y0 111
0$+(–l)” COS

flu
3a “

Fig. 4. (a) An equilateral triangular segment. (b) Location of image sources
for an equilateral triangle.

(16)
Substituting (19) in the left-hand side of (3), we get

Now substituting, 1= – (m +.) and simplifying as in Section II,

expression (16) can be expressed as
[

(V~+k2)G= ~ ~ k’-~(m’+mn+n’) 1
-* z z[~l(xo>Yo)~l(x>Y)+~2(~o$Yo)~2(x,Y)] .[AmnT,(x,y)+l?mnT’( x,.Y)]. (20)

Since (17) and (20) are equal for all values of x and y we have b:y

(17) comparison

where T2( x, y ) is defined as

“@y)=(-1)’c0s(ain[2T(:~n)yl+(-’)m ‘m”=16ti”2~:::;;~;fia2k2‘2’)
“c0s(%)sin[2T(l:’)yl
‘(-l)ncOs(%)sk[2m(:+m)yl“8)

The integers 1, m, and n in (18) maybe chosen, as in the case of

Tl(x, y ), to satisfy (9). It can be verified that the function

T,(x, y ) and T2(x, y ) both satisfy the boundary conditions (4)

for the equilateral triangle geometry shown in Fig. 4(a), It is seen

that T,(x, y ) has even symmetry about the x-axis and Tz(x, y)

has odd symmetry about the x-axis. Since the line current

excitation in the right-hand side of (3) is asymmetric, the funci

tion G should contain terms of both Tl(x, y ) and T2(x, y ). Let

G= ~ ~ [.AmnT,(x, y)+ BmnT2(x, y)]. (19)

and

B
4jupdT2(xo , yo)

mn = (q

16fi ~’(m’ +mn+n2)–9fia2k2 “

Substituting (21) and (22) in (19), we have

G(X, ylXO, yO)=4@/.Ld

m Z’1(xO, yO)T1(x, y)+ T2(x0, yO)T2(x, y)
“:x (23)

—m —m 16fi r’(m’ +mn+n2)–9fi a’k’

which is the required Green’s function for the equilateral triangle

shown in Fig. 4(a).

A. Green’s Functions for Even and Odd Modes

First term in the right-hand side of (23) corresponds to the

Green’s function for 30°-600 right-angled triangle given in (15).
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The second term in (23) is the Green’s function (divided by a

factor of 2) for the odd mode of the equilateral triangle (i.e., a

30°–600 right-angled triangle shown in Fig. 3(a) with the side

OB being an electric wall). This Green’s function may be ex-

plicitly expressed as

G(x, y[xo, y~)=8j&yld

“:: T2(xo, yo)T2(x, y)
(24)

–w –cc 16 fiT2(m2+mn +n2)-9fia2k2 “

IV. GREEN’S FUNCTIONS FOR m ISOSCELES

IUGHT-ANC3LED -NGLE

As in earlier cases, additional line sources are placed outside

the isosceles right-angled triangle shown in Fig. 5(a). The posi-

tions of the additional sources are shown in Fig. 5(b). In this

case the right-hand side of (3), (after placing additional sources)

reduces to

-@# $ : T(xo, yo)T(x, y) (25)
cow

where the potential function T(x, y ) is given by

T(x, y)=cos~cos~ +(–l)m+”cos~cos=.

(26)

The function T(x, y ) satisfies the boundary conditions (4) for

this triangle of Fig. 5(a). As before, G can be expressed as

G= ~ $ A~.T(x, y). (27)
—m —m

The left-hand side of (3), then reduces to

~ ~ Amn[k2-(~)2-(~)2 ]T(X,Y). (28)
—cc—m

The values of Am. are obtained by equating (25) and (28). The

Green’s function is given by

G(.x, ylxo, ye)= j ~m ~“’pdT(xO’y O) T(x’y) (29)
—m —* 2[(m2+n2)72–a2k2]

which is the required Green’s function for an isosceles right-angle

triangle shown in Fig. 5(a).

A. Green’s Functions for Odd Mode

The odd-mode triangle for the present case has the same

shape as shown in Fig. 5(a), with the side OB as an electric waif

where (5) should be satisfied and the other sides are magnetic

walls where (4) should be satisfied. Green’s function for this case

(dimensions and location unchanged as in Fig. 5(a)) is given by
mm

G(x, y]xo, yo)=2jw@~ ~
U(xo, yo)u(x, y)

-m -m [(mz+n2)n2-4a2k2]

(30)

where the summation is carried out only for odd values of m and

n, and

U(x, y)=cos*sin~ –(–l)(m+”)’2cos ~sin~.

(31)

Even mode of a right-angled isosceles triangle has the same

shape as the original segment. Green’s function given in (29)

may be used for this case also.

T
2a

1

Y

k-~A

B0 0 x
.3

(a)

Fig. 5. (a) Arr isosceles right-angled triangular segment. (b) Location of
image sources for an isosceles right-angled triangle.

7 ‘F’
Fig. 6. A square planar segment with symmetry about the diagonal,

B. Green’s Function when Hypotenuse is an Electric Wall

An isosceles right angled triangle, with the hypotenuse as an

electric waif and the other two sides being magnetic walls, would

need to be characterized for odd-mode analysis of a square

having symmetry about one of its diagonals. For example, for

the square planar segment shown in Fig. 6, the odd-mode

triangle would be a right-angle isosceles shown in Fig. 5(a). For

this case, the boundary condition (5) is valid on the hypotenuse

AB and on the other two sides (4) is satisfied. In this case, the

Green’s function is found to be

m jupdW(xo, yo)W(x, y)
G(x, ylxo, ye)= ~ ~

~.—~~.—~ 2[(m2+n2)m2–a2k2]

(32)

where

w(x, y)=cos~cos~ –(–l)”+”cos~cosy.

(33)

V. CONCLUDING Rsmuwc.s

The Green’s functions reported in this paper may be used to

analyze multiport circuits using triangular segments. Using seg-

mentation method [3], other two dimensional shapes which can

be divided into these three types of triangles (and rectangular

and circular geometries) can also be analyzed.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TSCRNIQUSS, VOL. MIT-28, NO. 10, OCTOBER 1980 1143

The key step in the method used is the placement of addi- ~21

tional image line sources and reduction of right-hand side of (3)

to a periodic function. One of the factors in this representation,

viz., T,(x, y) in (11), Tz(x, y) in (17), T’(x, y) in (25), fJ(x, y) in ‘3]

(30), and W’(X, y) in (32), is the potential function which satis-

fies the boundary conditions. Thus, this part of the procedure IA]

can be used in evaluation of potential functions in similar cases.

This technique could also be used for finding Green’s functions [5]

for triangular planar circuits with all short circuit boundaries [8].

A sixnilar procedure can be used for finding Green’s function for [6]

solution of Poisson’s equation also.
[7]
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Letters -—

Addendum to “Closed-Fortn Expressions for the

Current or Charge Distribution on Parallel Strips or

Microstrip”

EDWARD F. KUESTER AND DAVID C. Cf-IANG

It has been called to the authors’ attention that (28) in the

above paperl is too crudely approximated. The correct expres-

sion should read

()in * 1+2(6,+ l)ln2 .
t~
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Also, two further references on the subject have been discovered.

Rochelle [ 1] gives an expression for Cp using only a constant tnial

function for p(y). The error in the resulting formula can be as

large as 5 percent, considerably larger than that obtainable frc~m

(14) of the subject paper. Shchapoval [2] has presented a variety

of expressions valid for different ranges of C/t and c, for the

capacitance as well as p(y) of microstrip. In particular, he has

obtained the limiting form of (20) of the paper in the case where

er>>l.
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