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Green’s Functions for Triangular Segments in Planar
Microwave Circuits
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Abstract— Green’s functions are developed for the analysis of triangular
segments in microwave planar circuits. Three types of triangles (30°-60°
right-angled, equilateral, and isosceles right-angled) are treated by placing
additional image sources outside the triangular region.

I. INTRODUCTION

Two-dimensional microwave planar components have been
proposed for use in microwave-integrated circuits [1]-[3]. One of
the methods for analyzing these components is by use of Green’s
functions relating voltage at any point to a line current excita-
tion [1]. The Green’s functions for rectangular and circular
geometries are available [1]. Recently triangular elements have
also been proposed for realizing resonators and prototype ele-
ments for bandpass and bandstop filters [4], [5]. The triangular
resonators have been used in the design of 3-port circulators [5],
and gap-coupled triangular segments have been proposed for use
in filter circuits [4]. Also, characterization of triangular segments
is necessary when an accurate analysis of a three-microstrip
junction (such as encountered in power dividers), shown in
Fig. 1, is needed. However, Green’s functions for triangular
geometries have not been reported so far. This paper describes
the development of Green’s functions for three kinds of triangu-
lar geometries useful in planar circuits. These are 1) a 30°-60°
right-angled triangle, 2) an equilateral triangle, and 3) an isos-
celes right-angled triangle.

The basic integral equation involved in the analysis of planar
circuits [1] is

V(xy)= [ [ 6(x.y1x0, 30)iCx0, y0) dxodro (1)
where G is the Green’s function of the second kind having
dimension of impedance and i(x,, yo) denotes a fictitious source
current density injected normally. V(x, y) denotes voltage at
any point on the segment with respect to the ground plane.
Equation (1) is satisfied inside the contour C (Fig. 2), and the
open boundary condition on C may be written as

oV
5 =0 1))
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Fig. 1. Triangular segment in a typical Y junction.
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Fig. 2. Configuration for a typical segment in planar microwave circuits,

In planar circuits the dimension d is much smaller than the
wavelength and the Green’s function G is given by the solution
of

(VE+k?)G=—jwpdd(x—x0)8(y —¥,) 3)

with
3G/3n=0. @

In the above, k denotes propagation constant (wVpe ) in the
dielectric medium. Product of delta functions (x—x¢)8(y ~y,)
represents a line current flowing along z-direction and located at
(xg> ¥o)- Such sources have been called line sources in the text
later.

In circuits, which are symmetrical about an axis, even- and
odd-symmetry can be used for complete analysis of the circuit.
For example, in the circuit of Fig. 1, even- and odd-mode
circuits may be analyzed separately. For the odd-mode circuits,
the plane of symmetry (SS” in Fig. 1) is replaced by an electric
wall at which the boundary condition

G=0 &)

must be satisfied. Thus, there is a need to obtain odd-mode
Green’s functions, which satisfy (5) on one side of triangle (S5")
and (4) on the remaining sides (AS and AS’) of the planar
segment. The function G is evaluated for different triangular
geometries in the following sections.
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II. GReEN’S FUNCTION FOR 30°-60° RIGHT-ANGLE
TRIANGLE

For the triangular geometry shown in Fig. 3(a), the Green’s
function can be obtained by solving (3) with the boundary
conditions given by (4). To obtain an analytical solution for G,
the right-hand side of (3) is made periodic by placing additional
line sources outside the triangle. The additional line sources can
be thought of as obtained by taking multiple images [6] of the
line source at (xg, y,) with respect to the three sides of the
triangle which are magnetic walls as assumed earlier in (2). The
locations of these multiple images are shown in Fig. 3(b).

It can be seen that the periodicity of the pattern is 3a along
the y-axis and V3 a along the x-axis. Hence ABCDEF is chosen
as a basic cell which contains 24 line sources in 24 triangular
regions as shown in Fig. 3(b). It may be noted that a solution for
G with this set of multiple sources, will satisfy (3) in the original
region of interest, since (4) is satisfied at all the boundaries of all
triangular regions.

The Fourier series expressions for each of the 24-line sources,
which repeat periodically in two-dimensional space, are ob-
tained. The corresponding terms of these 24 expressions are
added together and the resulting expression identical to the
right-hand side of (3) in the original triangular region, can be
expressed as

N 0 oo
_ 8jwpd > 5 cos(zwmx)cos[ 21r(m+2n)y]

3V3a? m=—co n=—c V3a 3a
: {(— 1)"cos[ 2m(m+n)xg ]cos[ 277(”;_’1))}0 ] +cos(——2ﬂmx°)
V3a a4 V3a
. s[ 27r(m+2n)yo]+(_1)m+,, 27nx,
08| ——5——— cos ————\/ga
cos[_____Zw(Zr;z:n)yo }} 6

Now substituting /= — (m+ n), this reduces to

8jwud m 2amx 2a(n—1)y
-WZ 2(-1 COS( V3a )COS[ 3a ]Tl(x()s)’o)

Y
where Ti(x, y) is defined as
T(x,y)=(— I)ICOS(—————ZWIx )cos[ ——-——277(';_"))) ]
V3a a
+(— l)mcos( 2wmx) -cos[ 297(;—1)y J
V3a a
+(— 1)"cos( 2mnx )cos{ 2'”(13_m)y ] ®)
V3a a
with the condition that the integers /, m, and » satisfy
I+m+n=0. ¢

It can be seen that

2 2(- 1)1008( \2/7;[); )cos[ 27r(rg;n)y ]Tl(xo,yo)

2a(n—1)y

= 2(—1)"’005( 2\7;1: )cos[ 12

}Tl(xo,YO)

=32 (= 1)"cos( i/—?x )cos[ 277(1’3—am)y

a

] Ty(x9, ). (10)
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Fig. 3. (a) A 30°-60° right-angled triangular segment. (b) Location of

image sources for a 30°—60° right-angled triangle.

Using (10), expression (7) can be rewritten as

8jwpd
- ;;/_3‘;; > 2 Ti(x05 %) Ti(x, ¥).
It can be verified that the function T;(x, y) satisfies the boundary
conditions, given by (4), for the triangle shown in Fig. 3(a). Also,
it agrees with the potential function for an equilateral triangle
given by Schelkunoff [7]. The Green’s function G can now be
written in terms of these potential functions T(x, y) as

o0 oo

2 2 AmnTl(xsy)'
m=—oo n=-00
Substituting (12) in the left-hand side of (3), we get

o - 1672
(VZ2+k%*)G=3 3 | k2 - Py
—o0 — oo a

1

G= (12)

(m?2 +mn+n?)|4,,Ti(x,y).

(13)
Since (13) and (11) are equal for all values of x and p, we have
by comparison
8jwpdTy(xg, ¥o)

Apn = . (14)
16V3 72(m? +mn+n?)—9V3 a?k?

Substituting (14) in (12) we have
G(xaylxo’y0)=8jwﬂd

Ty (%0, yo) Ti(x, ¥)
16V3 72(m? +mn+n?)—9V3 a’k?

33 15
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which is the required Green’s function for (3), for the 30°-60°
right-angle triangle shown in Fig. 3(a).

III. GREEN’S FUNCTION FOR AN EQUILATERAL TRIANGLE

As in Section II, the right-hand side of (3) can be made
periodic by placing additional line sources outside the equilateral
triangle shown in Fig. 4(a). The positions of additional line
sources are obtained by taking multiple images of the original
line source at (xg, o) with respect to magnetic walls at the three
sides of the triangle. In this case the basic cell which repeats
itself is ABCDEF which contains 12-line sources in 12 triangular
regions as shown in Fig. 4(b). Adding the corresponding terms in
Fourier series expressions for each of the line sources in basic
cell, the resulting expression equivalent to the right-hand side of
(3) can be expressed as

_ 4jopd s [cos( 2amx )cos[ 2a(m+2n)y ]
3V3 a? Via 3a

. {(— 1)"cos[ 2‘”(1"/1-”))60 cos

3a

+COS( 2mmxg )cos[ 2vr(m;-2n)y0 ] +(—l)m+"cos( 27rnxo)
V3a a V3a

[277(”;;")}’0]

3a V3a 3a
+2
. {cos( 2'rrmx0) sin[ 2'7r(m3 n)yo ]
V3a 4

(- 1)'”+"cos( 2anx, )sin[ 202m+n)y, ]
V3a 3a

2a(m+n)x, }sin{ 277(";‘;")}’0 ] } ]
(16)

V3a
Now substituting, /= —(m+n) and simplifying as in Section II,
expression (16) can be expressed as

cos[ 27(2m+n)y, ] } +oos( 2mmx )sin[ 2a(m+2n)y ]

+(— l)"cos[

- %‘;‘% S S T(%0 90)Ti(x0 )+ Ty(x0r o) To(x, )]

a7

where T5(x, y) is defined as

Tz(x,y)=(—1)lcos( f/’;" )sin[ 2m(m=n)y ]+(—1)"‘

a 3a
-cos( z\%m: )sin{ 27(’;;1)}) ]
+(—1)"cos( 2\;’;" )sin[ Znll—m)y ] (18)
a

The integers /, m, and » in (18) may be chosen, as in the case of
Ti(x, y), to satisfy (9). It can be verified that the function
Ti(x,y) and T5(x, y) both satisfy the boundary conditions (4)
for the equilateral triangle geometry shown in Fig. 4(a). It is seen
that Ty(x, y) has even symmetry about the x-axis and T)(x, y)
has odd symmetry about the x-axis. Since the line current
excitation in the right-hand side of (3) is asymmetric, the func-
tion G should contain terms of both Tj(x, y) and T5(x, y). Let

G= 2 2 [’AmnTl(x’y)+anT2(x’y)]' (19)
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Fig. 4. (a) An equilateral triangular segment. (b) Location of image sources
for an equilateral triangle.

Substituting (19) in the left-hand side of (3), we get

2
(V24k2)6=3 3 | k2~ —“’”196:2 (m?+mn+n?)

‘[AmnTl(x’y)"'anTZ(x!y)]' (20)

Since (17) and (20) are equal for all values of x and y we have by
comparison

A, = 4jopdTy(xo,¥0) @
16V3 72(m? +mn+n?)—9V3 a2k>
and
- 4jwpdTy(x0, 10) . @)
16V3 72(m? + mn+n2)~9V3 a2k?
Substituting (21) and (22) in (19), we have
G(x,ylxo,y0)=4jwpd
. § < Ti(x0, ) Ti(x, )+ Ta(x9, yo) To(x, ¥) @3)

16V3 72(m? + mn+n?)—9V3 a2k?

which is the required Green’s function for the equilateral triangle

shown in Fig. 4(a).

— o0 — 0

A. Green’s Functions for Even and Odd Modes

First term in the right-hand side of (23) corresponds to the
Green’s function for 30°-60° right-angled triangle given in (15).
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The second term in (23) is the Green’s function (divided by a
factor of 2) for the odd mode of the equilateral triangle (ie., a
30°-60° right-angled triangle shown in Fig. 3(a) with the side
OB being an electric wall). This Green’s function may be ex-
plicitly expressed as

G(x!ylxo’y0)=8jw”d

o o0

N TZ(XO’yO)TZ(-xf.Y)
Zo o0 16V3 7%(m? +mn+n?)—9V3 ak?

24)

IV. GREEN’S FUNCTIONS FOR AN ISOSCELES
RIGHT-ANGLED TRIANGLE

As in earlier cases, additional line sources are placed outside
the isosceles right-angled triangle shown in Fig. 5(a). The posi-
tions of the additional sources are shown in Fig. 5(b). In this
case the right-hand side of (3), (after placing additional sources)
reduces to

jwud © ®©
—5 2 2 T(x0, %) T(x, ») (25)
2a ~00 —Oo0
where the potential function T(x, y) is given by
T(x,y)= cos 2 cosm +(— )’"+”cos—n—w—{cosm—zz.
(26)

The function 7(x, y) satisfies the boundary conditions (4) for
this triangle of Fig. 5(a). As before, G can be expressed as

G= 2 2 Am’lT(x’y)'

e2))
-0 —00
The left-hand side of (3), then reduces to
ma\2 [ nw\?
2 3 Am,,[k2 (Z5) -(%5) ]T(x,y). 28)

The values of 4, are obtained by equating (25) and (28). The
Green’s function is given by

G(x,ylxg,y0)= 2 2

—o —o0 2[(m +n?)m2—

JopdT(x9, 70)T(X, )
a2k? ]
which is the required Green’s function for an isosceles right-angle
triangle shown in Fig. 5(a).

(29)

A. Green’s Functions for Odd Mode

The odd-mode triangle for the present case has the same
shape as shown in Fig. 5(a), with the side OB as an electric wall
where (5) should be satisfied and the other sides are magnetic
walls where (4) should be satisfied. Green’s function for this case
(dimensions and location unchanged as in Fig. 5(a)) is given by

[+ o] o0 U s U s
G(x,y|%gs yo)=2jeud 2 [(mgj_onzj;oiz_(za)zjl)cz]

(30)

where the summation is carried out only for odd values of m and
n, and

nw

. may
2 P cos 2% sin

2a 2a
€29
Even mode of a right-angled isosceles triangle has the same

shape as the original segment. Green’s function given in (29)
may be used for this case also.

U(x,y)=cos —1)im+m/2 7X
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Fig. 5. (a) An isosceles right-angled triangular segment. (b) Location of
image sources for an isosceles right-angled triangle.
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Fig. 6. A square planar segment with symmetry about the diagonal.

B. Green’s Function when Hypotenuse is an Electric Wall

An isosceles right angled triangle, with the hypotenuse as an
electric wall and the other two sides being magnetic walls, would
need to be characterized for odd-mode analysis of a square
having symmetry about one of its diagonals. For example, for
the square planar segment shown in Fig. 6, the odd-mode
triangle would be a right-angle isosceles shown in Fig. 5(a). For
this case, the boundary condition (5) is valid on the hypotenuse
AB and on the other two sides (4) is satisfied. In this case, the
Green’s function is found to be

JopdW(xq, yo)W(x,y)

G(X,J’|xo’J’0)—m_2_wn_2_°° 2[(m +n2)'n‘ —q2k? ]
(32)
where
W(x,y)=cos™™ co y'rr_y (—D"* "cos Zxcosmwy.
(33)

V. CONCLUDING REMARKS

The Green’s functions reported in this paper may be used to
analyze multiport circuits using triangular segments. Using seg-
mentation method [3], other two dimensional shapes which can
be divided into these three types of triangles (and rectangular
and circular geometries) can also be analyzed.
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The key step in the method used is the placement of addi-
tional image line sources and reduction of right-hand side of (3)
1o a periodic function. One of the factors in this representation,
viz., Ty(x, y) in (11), Tr(x, y) in (17), T(x, y) in (25), U(x, y) in
(30), and W(x,y) in (32), is the potential function which satis-
fies the boundary conditions. Thus, this part of the procedure
can be used in evaluation of potential functions in similar cases.
This technique could also be used for finding Green’s functions
for triangular planar circuits with all short circuit boundaries [8].
A similar procedure can be used for finding Green’s function for
solution of Poisson’s equation also.
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New

Addendum to “Closed-Form Expressions for the
Current or Charge Distribution on Parallel Strips or
Microstrip”

EDWARD F. KUESTER aND DAVID C. CHANG

It has been called to the authors’ attention that (28) in the
above paper! is too crudely approximated. The correct expres-
sion should read

Cmgcrz—l-+—2— ln( 2!
tom tVa,

)+2(e,+ Din2{.
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Also, two further references on the subject have been discovered.
Rochelle [1] gives an expression for C, using only a constant trial
function for p(y). The error in the resulting formula can be as
large as 5 percent, considerably larger than that obtainable from
(14) of the subject paper. Shchapoval [2] has presented a variety
of expressions valid for different ranges of //¢ and e, for the
capacitance as well as p(y) of microstrip. In particular, he has
obtained the limiting form of (20) of the paper in the case where
€>1.
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